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Abstract. We reconsider the procedure developed for atoms a few decades ago by Girardeau, in the light
of the composite-boson many-body theory we recently proposed. The Girardeau’s procedure makes use
of a so called “unitary Fock-Tani operator” which in an exact way transforms one composite bound
atom into one bosonic “ideal” atom. When used to transform the Hamiltonian of interacting atoms, this
operator generates an extremely complex set of effective scatterings between ideal bosonic atoms and free
fermions which makes the transformed Hamiltonian impossible to write explicitly, in this way forcing to
some truncation. The scatterings restricted to the ideal-atom subspace are shown to read rather simply in
terms of the two elementary scatterings of the composite-boson many-body theory, namely, the energy-like
direct interaction scatterings — which describe fermion interactions without fermion exchange — and the
dimensionless Pauli scatterings — which describe fermion exchanges without fermion interaction. We here
show that, due to a fundamental difference in the scalar products of elementary and composite bosons, the
Hamiltonian expectation value for N ground state atoms obtained by staying in the ideal-atom subspace
and working with boson operators only, differ from the exact ones even for N = 2 and a mapping to the
ideal-atom subspace performed, as advocated, from the fully antisymmetrical atomic state, i.e., the state
which obeys the so-called “subsidiary condition”. This shows that, within this Girardeau’s procedure too,
we cannot completely forget the underlying fermionic components of the particles if we want to correctly
describe their interactions.

PACS. 05.30.Jp Boson systems – 34.50.-s Scattering of atoms and molecules – 71.35.-y Excitons and
related phenomena

1 Introduction

Although atoms are known to be made of many fermions,
they are commonly treated as elementary quantum par-
ticles. The deep motivation for such a simplification can
be seen as barely practical: as the many-body procedures
up to now available are valid for elementary fermions or
elementary bosons only [1,2], it was somehow a necessity
to replace composite atoms by elementary quantum par-
ticles, in order to deal with their interactions.

Such a replacement corresponds to freeze the fermionic
components of these composite atoms in a given config-
uration once and for all, in order to, afterwards, forget
all fermion exchanges between atoms. The physical ar-
gument usually given to support this exchange omission
is the fact that, in the low density limit, the atoms are
very far apart so that the overlap between atomic wave
functions is very small, making the exchanges between
atoms also very small. This argument is not correct for
atoms cold enough to behave as quantum particles: in-
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deed, the center of mass of these composite atoms made
of elementary fermions is not pinned in a well defined po-
sition, but delocalized over the whole sample — or, more
realistically, over the atom coherence length — so that
atoms are never “far apart”. In saying that atoms are far
apart, we see them not as quantum particles but as wave
packets, the energy dispersion of these wave packets being
small compared to kBT — which is what happens in most
experimental conditions, for the mass of the atom center-
of-mass is quite large. However, such wave packets are not
appropriate to describe interacting atoms when the tem-
perature is very low, as in the experiments on ultracold
gas nowadays performed.

Various mathematical procedures [3] have been pro-
posed to map the two-fermion space into the elementary-
boson space, i.e., to replace atoms made of two fermions
by elementary bosons. These bosonization procedures
include a certain amount of fermion exchanges in the
effective scatterings between “ideal” elementary atoms
they generate. Girardeau has tackled this problem a few
decades ago [4–12] through a procedure conceptually more
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sophisticated than most other approaches [13], as it for-
mally contains the possible dissociations of bosonic “ideal”
atoms into their fermionic components. The method,
which is still considered as a relevant approach to com-
posite bosons, is based on a smart unitary transformation
— called the Fock-Tani transformation by Girardeau [14]
— which maps the bound states of a composite atom into a
different space made of “ideal elementary atoms” in a fully
exact manner in the case of just one composite atom. This
unitary transformation is then used to formally transform
the Hamiltonian of interacting atoms, originally written in
terms of fermion operators, into a Hamiltonian which, in
addition to fermion operators, also contains elementary-
boson operators which represent the “ideal atoms”. The
two-body scatterings between these ideal atoms are found
to contain direct as well as exchange Coulomb processes.
This procedure also generates very many scatterings be-
tween ideal atoms and fermions, which are increasingly
complex. As a direct consequence, the transformed Hamil-
tonian cannot be written explicitly, thus forcing to some
drastic truncation.

A few years ago, the author, along with
Betbeder-Matibet, has tackled the problem of inter-
acting composite excitons through a completely different
approach [15]. (Excitons differ from hydrogen atoms
for their mass ratio only, if we forget “electron-hole
exchange”, i.e., Coulomb scatterings between the valence
and conduction bands.) The challenge was to completely
avoid the introduction of elementary-boson operators
while proposing an exact but tractable way to deal with
fermion exchanges between composite quantum particles.
This composite-boson many-body theory [15], recalled
in Section 2, makes use of the linear combinations of
one-fermion-pair states which are the exact bound and
unbound eigenstates of the system Hamiltonian. It relies
on four nicely simple commutators between the operators
creating these fermion pairs: two for Coulomb interactions
without exchange process and two for fermion exchanges
without interaction process. The so-called Shiva dia-
grams [16] associated to this theory allow us to visualize
the tricky fermion exchanges which take place between
these composite quantum particles. Using them, it is now
possible not only to see but also to readily calculate any
physical effect involving interacting excitons, — or atoms
made of fermion pairs — with the fermion exchanges be-
tween any number of these composite particles included
in an exact way. In particular, these Shiva diagrams
make easy the selection of all contributions leading to a
particular order in the composite-boson density,

η = n aD
B = N

(aB

L

)D

, (1)

where N is the composite-boson number, aB the spatial
extension of the composite-boson bound state of interest,
L the sample size and D the space dimension. η is the
small dimensionless parameter that emerges in all low-
density properties of these many-body systems. Let us
stress that these η expansions are rather tricky to per-
form, a priori, because they are not, as usual, driven by

the number of interactions since these fermion interac-
tions are often responsible for the composite-boson bound
states.

In view of the popularity that the Girardeau’s ap-
proach has gained over the last decades in atomic [17–20]
and also in nuclear physics [21–23], it is of interest to
revisit this sophisticated procedure in the light of the
new composite-boson many-body theory. In order to make
clear the basic ideas of Girardeau’s approach, we have
decided to stick on the original work described in ref-
erence [7], although some important improvements have
been later on proposed through a generalized Fock-Tani
transformation [11]. They however lead to calculations
which are even more complicated. This original work
is briefly recalled in Section 3. A precise rewriting of
the part of the transformed Hamiltonian between ideal
atoms is made in terms of the scatterings appearing in
the composite-boson many-body theory described in Sec-
tion 2. Section 4 is devoted to a discussion of some fun-
damental differences which exist between the Girardeau’s
approach of reference [7] and the composite-boson many-
body theory. This section also points out some important
consequences of these differences in a physically relevant
quantity, namely, the Hamiltonian expectation value for
N ground state atoms at low density, these fundamental
differences remaining in the N = 2 limit.

As a main result, we here show that, although the uni-
tary Fock-Tani transformation presented in reference [7]
should in principle allow us to recover the exact results
derived by the composite-boson many-body theory if all
the terms are kept — since the results cannot be changed
by introducing the unity operator I written as U−1U —
its restriction to the bosonic-ideal-atom subspace leads to
incorrect results for N = 2 interacting atoms already, even
if the boson mapping is done, as advocated, from the fully
antisymmetrical state, i.e., the state which obeys the so-
called “subsidiary condition”. This strongly reduces the
interest of the Girardeau’s procedure because, when all the
terms of the transformed Hamiltonian and all the terms
of the transformed states are kept, this procedure, even
in its simplest form, i.e., without using the generalized
Fock-Tani transformation proposed later on [11], is far less
compact than the composite-boson many-body theory we
have constructed.

In the present paper, we consider a system made of two
different species of fermionic particles, in equal number,
with an attractive potential between them strong enough
to have bound states. In the following, we are going to call
coboson — a contraction for “composite boson” — a pair
of interacting fermions, this pair being either in a bound or
in an extended state. In order to make an easy link between
the present paper and the various previous works, we have
chosen to keep the notations of these previous works, while
giving the precise correspondence which exists between
them. These two sets of notations may however lead to
some confusion: as an example, the two fermion species are
called α and β in the composite-boson many-body theory,
while α labels the bound atom states in the Girardeau’s
procedure described in reference [7].
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2 Survey of the composite-boson many-body
theory

2.1 The system Hamiltonian

The Hamiltonian of a translationally invariant system
made of fermions α and β reads in first quantization as

H =
∑

i

p2
αi

2mα
+
∑

j

p2
βj

2mβ
+

1
2

∑
i�=i′

vαα(rαi − rαi′ )

+
1
2

∑
j �=j′

vββ(rβj − rβj′ ) +
∑
i,j

vαβ(rαi − rβj ). (2)

In the case of hydrogen atoms, the fermions α are the elec-
trons and the fermions β the protons, so that mα � mβ .
In the case of excitons, the fermions α are the conduction
electrons, i.e., electrons dressed by their interactions with
the periodic semiconductor crystal, while the fermions β
are the valence holes, so that mα is of the order of mβ .
The fermions of the H atoms or the fermions of the ex-
citons interact through the Coulomb potential so that
vαα(r) = vββ(r) = −vαβ(r) = e2/εrr, where εr is the
semiconductor relative dielectric constant in the case of
excitons while εr = 1 for H atoms in vacuum.

It is convenient to write this Hamiltonian in second
quantization using the free-fermion states |kα〉 = a†kα

|0〉
and |kβ〉 = a†kβ

|0〉 defined as

(
p2

α

2mα
− ε

(α)
kα

)
|kα〉 = 0

(
p2

β

2mβ
− ε

(β)
kβ

)
|kβ〉 = 0, (3)

with ε(α)
kα

= k2
α/2mα and ε(β)

kβ
= k2

β/2mβ.
Since holes are valence-electron absences, their cre-

ation and destruction operators b†kβ
and bkβ

unambigu-
ously anticommute with the creation operators of conduc-
tion electrons a†k. It is convenient to consider that the
operator a†kα

also anticommutes with bkβ
or b†kβ

in the
case of electrons and protons. This allows us to avoid ir-
relevant minus signs which appear all over the calculation
but disappear from all physical results — as possible to
explicitly check. Consequently, the anticommutation rela-
tions for the fermion operators a†kα

and b†kβ
read, for H

atoms as well as for excitons, as
[
akα , a

†
k′

α

]
+

= δkα,k′
α
,

[
akα , ak′

α

]
+

= 0 ,
[
bkβ

, b†k′
β

]
+

= δkβ ,k′
β
,

[
bkβ

, bk′
β

]
+

= 0 ,
[
akα , b

†
k′

β

]
+

=
[
akα , bk′

β

]
+

= 0, (4)

the momenta kα and kβ being quantized in units 2π/L
for fermions in a finite volume L3, in order for the fermion
wave functions to be normalized.

The system Hamiltonian in second quantization then
reads

H = Hα +Hβ + Vαα + Vββ + Vαβ , (5)

with the kinetic parts given by

Hα =
∑
kα

ε
(α)
kα
a†kα

akα , Hβ =
∑
kβ

ε
(β)
kβ
b†kβ

bkβ
, (6)

while the Coulomb parts are given by

Vαβ = −
∑
q �=0

Vq

∑
kα,kβ

a†kα+qb
†
kβ−qbkβ

akα , (7)

Vαα =
1
2

∑
q �=0

Vq

∑
kα1 ,kα2

a†kα1+qa
†
kα2−qakα2

akα1
, (8)

and similarly for Vββ , the Fourier transform of the
Coulomb potential being Vq = 4πe2/εrL

3q2 in a finite
3D volume L3, and Vq = 2πe2/εrL

2q2 in a quantum well
with 2D area L2.

2.2 The coboson operators B†
i

Let us introduce the creation operators for the one-
fermion-pair eigenstates of the system Hamiltonian,

H |i〉 ≡ H B†
i |v〉 = Ei|i〉, (9)

the set of |i〉’s spanning all bound and unbound one-pair
states.

Since the |i〉’s are the one-pair eigenstates of H , while
the |kα,kβ〉’s are the one-pair eigenstates ofHα+Hβ, they
both form a complete basis for one-pair states, so that

I =
∑

i

|i〉〈i|,

I =
∑

kα,kβ

|kα,kβ〉〈kβ ,kα|. (10)

The above equations allow us to expand cobosons on free
pairs as

|i〉 =
∑

kα,kβ

|kα,kβ〉〈kβ ,kα|i〉,

and free pairs on cobosons in a similar way. Using these
expansions, we readily find that the creation operators for
interacting and free pairs are linked by

B†
i =

∑
kα,kβ

a†kα
b†kβ

〈kβ ,kα|i〉, (11)

a†kα
b†kβ

=
∑

i

B†
i 〈i|kα,kβ〉. (12)
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Fig. 1. Pauli scattering λ
(

n j
m i

)
between two cobosons in states

i and j, as given in equation (15), i.e., fermion exchange in the
absence of fermion interaction. Solid line: fermion α. Dashed
line: fermion β.

2.3 Exchanges between cobosons

Using the commutation relations (4), it is easy to show
that [24] [

Bm, B
†
i

]
= δm,i −Dmi, (13)

[
Dmi, B

†
j

]
=
∑

n

{
λ
(

n j
m i

)
+ λ

(
m j
n i

)}
B†

n. (14)

where the exchange (or Pauli) scatterings λ
(

n j
m i

)
, defined

in equation (14) and shown in Figure 1, are dimensionless
parameters which correspond to exchange a fermion β be-
tween the cobosons i and j, the cobosons m and i of the
lower line by definition having the same fermion α. The
amplitude of this scattering is given by (see Ref. [25] for
a detailed derivation)

λ
(

n j
m i

)
=
∫
drα1 drα2 drβ1 drβ2 φ

∗
m(rα1 , rβ2)

× φ∗n(rα2 , rβ1)φi(rα1 , rβ1)φj(rα2 , rβ2). (15)

An important property of the “deviation-from-boson op-
erator” is Dmi|v〉 = 0, as easy to show by making equa-
tion (13) acting on vacuum.

From the commutators (13,14), we readily find [26]

〈0|BmBnB
†
iB

†
j |0〉 = δm,i δn,j−λ

(
n j
m i

)
+ (m ↔ n). (16)

This shows that the N -coboson states are not orthogonal
for N = 2 already.

Using these commutators, we can also calculate the
normalization factor for a N -coboson state having all its
cobosons in the same state 0. A less trivial calculation
leads to [27,28]

〈0|BN
0 B

†N
0 |0〉 = N !FN , (17)

where FN obeys the recursion relation [16,28]

FN = FN−1 − (N − 1)FN−2λ2

(
0 0
0 0

)

+ (N − 1)(N − 2)FN−3λ3

⎛
⎝

0 0
0 0
0 0

⎞
⎠− · · · (18)

Fig. 2. Shiva diagram for the fermion exchange λ3 between
3 cobosons in state 0, leading to 3 cobosons in state 0, as
appearing in equation (18).

λ2 is the exchange scattering λ between two cobosons de-
fined in equation (15), while λ3 corresponds to the ex-
change betweeen 3 cobosons shown in the Shiva diagram
of Figure 2, the higher-order prefactors λn being repre-
sented by similar diagrams. Their precise values can be
found in reference [16].

From equation (18), it is possible to show [27,28] that,
in the small-density limit, FN is not close to 1, as could
be näıvely thought, but exponentially small. Indeed, for 0
being the hydrogen atom or exciton ground state in 3D,
we find, using equation (15),

λ
(
0 0
0 0

)
=

33π
2

(aB

L

)3

, (19)

where aB = �
2εr(m−1

α + m−1
β )/e2 is the coboson Bohr

radius. According to equation (18), this leads to a “cor-
rective” factor FN which reads

FN � exp
[
N

(
−33π

4
η +O(η2)

)]
, (20)

with η defined in equation (1). While, in the small den-
sity limit, η � 1 (as necessary for bound cobosons not to
dissociate into a dense two-fermion plasma), the product
Nη is usually large in macroscopic sample, which makes
FN exponentially small.

2.4 Interactions between cobosons

Interactions between cobosons are not easy to define prop-
erly due to the composite nature of the particles : indeed,
Vαβ′ is part of the interactions between cobosons if the co-
bosons are made of the fermions (α, β) and (α′, β′), while
the same Vαβ′ is an interaction inside one of the cobosons
if these cobosons are made of (α, β′) and (α′β). Due to
the fermion undistinguishability, there is no way to know
how the cobosons are made. Consequently, there is no way
to write the interactions betwen composite quantum par-
ticles as a potential.

Interactions between cobosons can actually be han-
dled, not through a potential, but through the set of
“creation-potentials” V †

i for the coboson i. These creation-
potentials emerge from the commutator [24]

[
H,B†

i

]
= EiB

†
i + V †

i . (21)
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Fig. 3. Direct interaction scattering ξdir
(

n j
m i

)
, as given in

equation (23), due to the fermion interaction between cobosons
in states i and j, in the absence of exchange process.

The direct scatterings between two cobosons then follow
from [

V †
i , B

†
j

]
=
∑
mn

ξdir
(

n j
m i

)
B†

mB
†
n. (22)

These scatterings, shown in Figure 3, are energy-like quan-
tities given by (see Ref. [25] for a detailed derivation)

ξdir
(

n j
m i

)
=
∫
drα1 drα2 drβ1 drβ2 φ

∗
m(rα1 , rβ1)

× φ∗n(rα2 , rβ2)φi(rα1 , rβ1)φj(rα2 , rβ2) × [vαα(rα1 − rα2)
+vββ(rβ1 − rβ2) + vαβ(rα1 − rβ2) + vαβ(rα2 − rβ1)] .

(23)

Note that, for vαα = −vαβ, as in the case of oppositely
charged fermions interacting through Coulomb potentials,
we have

ξdir
(

n j
i i

)
= 0, (24)

whatever the parity of the coboson state i is, as seen by
exchanging α and β in equation (23).

An important property of the creation-potential is
V †

i |v〉 = 0, as easy to show by making equation (21) acting
on vacuum.

Using the above commutators (21, 22) as well as the
scalar product (16), it is straightforward to derive the ma-
trix elements of the system Hamiltonian H in the two-
coboson subspace. For H acting on the right, we find [24]

〈0|BmBnHB
†
iB

†
j |0〉 = (Ei + Ej)

[
δm,i δn,j − λ

(
n j
m i

)]

+ ξdir
(

n j
m i

)
− ξin

(
n j
m i

)
+ (m↔ n), (25)

where ξin is the exchange interaction scattering shown in
Figure 4, and defined as (see Ref. [25] for a detailed deriva-
tion)

ξin
(

n j
m i

)
=
∑
pq

λ
(

n q
m p

)
ξdir

(
q j
p i

)
(26)

=
∫
drα1 drα2 drβ1 drβ2 φ

∗
m(rα1 , rβ2)

× φ∗n(rα2 , rβ1)φi(rα1 , rβ1)φj(rα2 , rβ2)
× [vαα(rα1 − rα2) + vββ(rβ1 − rβ2)
+vαβ(rα1 − rβ2) + vαβ(rα2 − rβ1)] , (27)

the interactions being between the “in” cobosons (i, j),
but inside the “out” cobosons (m,n).

Fig. 4. Exchange interaction scattering ξin
(

n j
m i

)
, as given in

equation (27), due to fermion interactions between cobosons in
states i and j followed by a fermion exchange.

Fig. 5. Exchange interaction scattering ξout
(

n j
m i

)
, as given in

equation (29), due to a fermion exchange between cobosons in
states i and j followed by fermion interactions.

By making H act on the left in equation (25) and by
adding half of the two results, we find an expression of
the H matrix element which is symmetrical with respect
to the “in” and “out” states (i, j) and (m,n). It reads

〈0|BmBnHB
†
iB

†
j |0〉 = (Ei + Ej)δm,i δn,j + ξdir

(
n j
m i

)

− 1
2

{
(Em+ En+ Ei+ Ej)λ

(
n j
m i

)

+ξin
(

n j
m i

)
+ ξout

(
n j
m i

)}

+ (m↔ n), (28)

where ξout is the exchange interaction scattering defined as

ξout
(

n j
m i

)
=
∑
pq

ξdir
(
n q
m p

)
λ
(

q j
p i

)
, (29)

and shown in Figure 5, its interactions being between the
“out” cobosons (m,n).

The “in” and “out” exchange interaction scatterings
are related to the Pauli scattering through [24,25]

ξin
(

n j
m i

)
− ξout

(
n j
m i

)
= (Em + En − Ei − Ej)λ

(
n j
m i

)
.

(30)
They are thus equal for Em +En = Ei +Ej , i.e., when the
“in” and “out” cobosons exactly have the same energy.



294 The European Physical Journal B

2.5 The keys of the coboson many-body theory

The four commutators given in equations (13, 14)
and (21, 22) are the keys to calculate any quantity in-
volving interacting fermion pairs in the low density limit.

Indeed, by using equation (12), it is possible to write
any N -pair state in terms of coboson operators. This
makes appearing matrix elements like

〈v|BmN · · ·Bm1 f(H)B†
i1
· · ·B†

iN
|v〉.

To calculate them, we first push f(H) to the right by using
the commutators [f(H), B†] deduced from the commuta-
tor (21). The f(H)’s of physical interest are 1/(a − H)
for correlation effects and response functions, and e−iHt

for time evolution or adiabatic establishment. The cor-
responding commutators can be found in references [29]
and [30]. These commutators generate a lot of creation-
potentials V †

i . They are eliminated through the com-
mutator (22) to produce direct interaction scatterings
ξdir

(
n j
m i

)
. The remaining scalar products of N -coboson

states are then calculated by using the commutator (13),
the deviation-from-boson operators Dmi being eliminated
through the commutator (14), to produce (2 × 2) Pauli
scatterings λ

(
n j
m i

)
. It is actually possible to readily cal-

culate these N -coboson scalar products in terms of n-body
exchanges using the Shiva diagrams, as explained in ref-
erence [16].

Let us note that the first of these four commuta-
tors (13) has been written in the literature for a very long
time by various authors. It is nothing but the mathemat-
ical way to write that the linear combinations of fermion
pairs making B†

i are not exact bosons. While the third of
these commutators (21) is less trivial, it already appeared
in the theory of the exciton optical Stark effect proposed
by the author 20 years ago [31,32]. On the opposite, the
two other commutators (14) and (22) are totally novel.
They can be seen as a rather smart way to make appear-
ing the scatterings resulting from interactions and fermion
exchanges between two composite bosons.

2.6 The Hamiltonian expectation value

Using the above formalism based on the four commuta-
tors (13, 14, 21, 22), it is possible to calculate the expec-
tation value of the system Hamiltonian in a state made of
N atoms in the same state 0,

〈H〉N =
〈0|BN

0 HB
†N
0 |0〉

〈0|BN
0 B

†N
0 |0〉 , (31)

in terms of the Pauli and Coulomb scatterings, λ and ξdir.
Let us stress that, while B†N

0 |0〉 is definitely not the exact
ground state ofN atoms, it is close to it: following Keldysh
and Koslov [33], this state leads to the expected N -atom
ground state energy NE0 at zero order in density — a
result recovered below, in a trivial way.

Using equations (16, 28), it is straightforward to show
that, for N = 2, this expectation value is given by

〈H〉2 = 2
2E0

[
1 − λ

(
0 0
0 0

)]
+ ξdir

(
0 0
0 0

)− ξin
(
0 0
0 0

)
2 − 2λ (0 0

0 0)
, (32)

since ξin
(
0 0
0 0

)
= ξout

(
0 0
0 0

)
according to equation (30). As

ξdir
(
0 0
0 0

)
= 0 for fermions interacting through Coulomb

potential, due to equation (24), this Hamiltonian expec-
tation value for two H atoms or excitons thus reduces to

〈H〉2 = 2E0 −
ξin
(
0 0
0 0

)
1 − λ (0 0

0 0)
. (33)

For 0 being their 3D ground state, ξin, defined in equa-
tion (27), is equal to [34]

ξin
(
0 0
0 0

)
= −26π

3

(aB

L

)3

R0, (34)

where R0 = e2/2εraB, the value of the diagonal Pauli
scattering λ

(
0 0
0 0

)
being given by equation (19). This shows

that the energy change from the bare 2E0 value induced
by the interactions of just 2 cobosons is vanishingly small
when the sample volume goes to infinity, as physically
reasonable.

If we now turn to the energy change induced by the
interactions of N cobosons in the same state 0, we expect
to have an N in front of these (aB/L)3 terms, i.e., to have
an energy change depending on the atom density through
the dimensionless parameter η defined in equation (1). A
less trivial calculation [34] allowed us to show that

〈H〉N = N

[
E0 − (N − 1)

2
FN−2

FN
ξin2

(
0 0
0 0

)

+ (N − 1)(N − 2)
FN−3

FN
ξin3

⎛
⎝

0 0
0 0
0 0

⎞
⎠+ · · ·

]
, (35)

where ξin2 = ξin, while ξin3 , which corresponds
to the Shiva diagram of Figure 6, is equal to
(− 2933

20 π2)
(

aB

L

)6
R0; and so on. . . By using the recursion

relation (18) for the FN ’s, we end with the Hamiltonian
expectation value for N atoms in the same ground state
0 with energy E0 = −R0, given by

〈H〉N = NR0

[
−1 +

13π
3
η − 73π2

2
η2 +O(η3)

]
. (36)

Note that the two first terms of this Hamiltonian expecta-
tion value have already been obtained through totally dif-
ferent procedures by Keldysh-Koslov [33] and by Nozières-
Comte [35].

2.7 Overcompleteness of the coboson basis
and closure relations

By using equations (11) and (12), it is possible to rewrite
the product of two coboson operators in terms of all co-
boson states according to [24,36]

B†
iB

†
j = −

∑
mn

B†
mB

†
n λ
(

n j
m i

)
. (37)
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Fig. 6. Shiva diagram representing the exchange interac-
tion scattering appearing in equation (35). It corresponds to
fermion interactions between two cobosons in state 0 followed
by a fermion exchange with a third coboson in state 0, the
three scattered cobosons being in the same state 0 as the three
initial cobosons.

This in particular leads to

B†2
0 =

1
1 − λ (0 0

0 0)

∑
mn�=00

B†
mB

†
n λ
(

n 0
m 0

)
, (38)

which proves that the coboson basis is overcomplete —
and thus non orthogonal — for N = 2 cobosons already,
since the state B†2

0 |v〉 can be written in terms of all the
other 2-coboson states B†

mB
†
n|v〉.

In spite of the fact that the N -coboson states form
an overcomplete set for N fermion pairs, they do have
a closure relation which turns out to be very simple. It
reads [37]

I =
1

(N !)2
∑

i1,...,iN

B†
i1
· · ·B†

iN
|0〉〈0|BiN · · ·Bi1 . (39)

For comparison, the closure relation for elementary
bosons, i.e., bosons such that

[
B̄m, B̄

†
i

]
= δm,i, reads as

I =
1
N !

∑
i1,...,iN

B̄†
i1
· · · B̄†

iN
|0〉〈0|B̄iN · · · B̄i1 . (40)

It is of importance to stress that the factor (1/N !) dif-
ference in the closure relations of composite and elemen-
tary bosons makes all the sum rules of these quantum
particles irretrievably different whatever the bosonization
procedure used to derive the effective scatterings between
bosonized atoms is. This constitutes a very strong math-
ematical argument against the possible validity of any
bosonization procedure which ends by using boson oper-
ators only. Let us also stress that the discrepancy exists
for N = 2 already since the prefactor is then 1/4 for com-
posite bosons and 1/2 for elementary bosons.

3 Survey of the Girardeau’s boson-fermion
procedure

We now turn to the procedure [7] developed by Girardeau
in the 70’s and which is still considered as an appropriate
approach to interacting atoms. We are going to discuss
this procedure in the light of the composite-boson many-
body theory recalled in the preceding section. Equations

prefaced with a “G” refer to the original 1975 paper, ref-
erence [7], in which this procedure is presented. We have
chosen not to enter its improvements such as the one de-
scribed in reference [11], to make clearer the basic ideas of
this theory, in order to pin out the conceptual difficulties
they raise.

Girardeau’s paper starts with a system Hamiltonian,
equation (G1), which is identical to the Hamiltonian of
equations (5–8): it is just written in terms of electron field
operators ψ†(x) and proton field operators ψ†(X), where
x and X are the electron and proton spatial variables.
These operators are related to the fermion operators a†kα

and b†kβ
introduced in equation (3) through the Fourier

series
ψ†(x) =

∑
kα

a†kα
〈kα|x〉, (41)

ψ†(X) =
∑
kβ

b†kβ
〈kβ |X〉, (42)

with 〈x|k〉 = eik·x/LD/2. Note that, while formally equiv-
alent to the operators a†k and b†k, the field operators ψ†(x)
and ψ†(X) lead to equations which may appear as far less
compact since the sums over the k’s are then replaced by
integrals over (x,X).

Although written in terms of free fermions only, the
Hamiltonian H of course implicitly contains the fact that
hydrogen atoms do have bound states through its one-
pair eigenstates. In spite of it, Girardeau somehow forces
these bound states into the problem via elementary-boson
operators, by using a unitary transformation U which, in
an exact way, transforms the one-composite-boson state
A†

α|0〉 for bound hydrogen atoms into the elementary-
boson state a†α|0〉. In view of the definition of A†

α given in
equation (G2), the correspondence between the two sets
of notations reads

A†
α ↔ B†

i (43)

a†α ↔ B̄†
i . (44)

The only difference, of crucial importance, is for the in-
dex i which runs over all bound and unbound states in
the composite-boson many-body theory, while the α’s
are by construction restricted to bound states only in
the Girardeau’s procedure. As an important consequence,
the bound and unbound states |i〉 = B†

i |0〉 form a com-
plete set for one-fermion-pair states while this is not true
for the A†

α|0〉’s. This is why, in addition to the states
A†

α|0〉, Girardeau is forced to also keep the free-fermion-
pair states ψ†(X)ψ†(x)|0〉 in order to possibly describe all
the states made of one electron-proton pair reached by
scatterings. In short, while in the composite-boson many-
body theory, we have at hand two independent complete
sets for one-fermion-pair states, namely, the B†

i |0〉’s and
the a†kα

b†kβ
|0〉’s, the Girardeau’s procedure makes use of

all the ψ†(X)ψ†(x)|0〉 states — which form a complete
basis by themselves — plus the A†

α|0〉’s, these two sets of
states then forming an overcomplete basis for one-fermion-
pair states already, since A†

α reads in terms of ψ†(X)ψ†(x)
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through equation (G3). It is clear that this overcomplete-
ness is going to be tricky to handle properly.

The mapping from composite bosons to elementary
bosons through the unitary transformation U , fully ex-
act for one-pair bound states, becomes approximate when
going beyond one-pair states. This is directly linked to the
fact that, due to the overcompleteness of the composite-
boson basis for any N larger than 1, it is not possible
to separate products of bound-state atom operators from
the unbound ones: indeed, as shown in equation (38), B†2

0
reads in terms of all products of bound and unbound
cobosons B†

mB
†
n with (m,n) �= (0, 0). So that there is

no clean way to separate a state only made of bound-
atom operators A†

α1
...A†

αN
|0〉 from the states also having

unbound-atom operators: the separation between bound
and unbound atom operators is one of the major con-
ceptual difficulties encountered — and to our opinion not
properly solved — by the procedure Girardeau has pro-
posed.

The physical reason to separate bound atom opera-
tors from extended atom operators, is to have commuta-
tion rules as close to ideal bosons as possible. Since from
equation (G5),

[
A′

α, A
†
α

]
= δα′,α + Cα′α, (45)

this leads to require the effects of the operators Cα′α to be
small. In view of equation (13), the operator Cα′α is just
the operator (−Dmi) of the composite-boson many-body
theory.

This operator Cα′α, explicitly given in equation (G6),
reads in terms of the proton and electron field operators,
Cα′α = C

(p)
α′α + C

(e)
α′α, as

C
(p)
α′α = −

∫
dX dX′Kα′α(X,X′)ψ†(X)ψ(X′), (46)

with (X,X′) replaced by (x,x′) in the case of C(e)
α′α. The

prefactors Kα′α, called “exchange kernels”, depend on the
atom wave functions through

Kα′α(X,X′) =
∫
dxφ∗α′ (X′,x)φα(X,x). (47)

In bound states with a spatial extension aB, the proton
and the electron have to be at a distance of the order of
aB, for the atom wave function to differ from zero. Con-
sequently, in order for the exchange kernel Kα′α(X,X′),
with α and α′ being bound states, to differ from zero, we
must have x � X′ � X within a scale aB. Instead of run-
ning over the whole sample volume L3, the proton X′ in
equation (46) thus has to stay within a volume a3

B from
the proton X. This induces a factor a3

B/L
3 in the opera-

tor Cα′α which makes the matrix element of this operator
in a N -atom state vanishing as Na3

B/L
3 = η with the

atom density n = N/L3. Consequently, the fact that the
atoms differ from ideal bosons through the Cα′α operators
is going to induce corrections of the order of η in systems
having N bound atoms.

3.1 Introduction of elementary-boson operators

In a second step, a new set of boson operators a†α (≡B̄†
i )

which act in a disjoint space, is formally introduced, and
forced into the problem through the construction of the
antihermitian operator F = −F †, defined as

F =
∑

α bound

(
a†αAα − A†

αaα

) ≡
∑

i bound

(
B̄†

iBi −B†
i B̄i

)
,

(48)
the sum being restricted to bound states as the operators
a†α are only defined for these states. A unitary operator
U(ε) is then constructed out of F (see Eq. (G16)),

U(ε) = exp(εF ), (49)

where ε is a real constant yet arbitrary. As explicitly shown
below, it is such that

U(π/2)A†
α|0〉 = a†α|0〉, (50)

so that the unitary operator U(ε), taken for the magic
value ε∗ = π/2, allows to in an exact way transform the
one-composite-boson state A†

α|0〉 into the one-elementary-
boson state a†α|0〉. Let us note that if the sum over i in
F were taken over bound and unbound states, this exact
result would also be true for unbound states.

Unfortunately, this nicely simple result does not hold
for more than one atom: the exact transformation of
N -composite-atom states turns out to be very complicated
for N = 2 already. Before going deeper into the problems
raised by N ≥ 2 atoms, let us remember that, according
to Section 2,

〈0|BN
0 B

†N
0 |0〉 = N !FN = FN 〈0|B̄N

0 B̄
†N
0 |0〉, (51)

with FN exponentially small for large N , even if the atom
density is very small. As, for U(ε) being a unitary opera-
tor, this scalar product also reads

〈0|BN
0 B

†N
0 |0〉 = 〈0|BN

0 U
†(ε)U(ε)B†N

0 |0〉, (52)

this means that the transformed N -composite-atom
state U(ε)B†N

0 |0〉 must be very different from the N -
elementary-atom state B̄†N

0 |0〉 whatever the value of ε
is, due to the exponentially small prefactor FN in equa-
tion (51), the norm of B̄†N

0 |v〉 being N ! exactly.
By expanding U(ε) in powers of F , it is possible to

show that the transformed composite-atom creation oper-
ator A†

α ≡ B†
i reads as

U(ε)B†
iU

†(ε) = B†
i +

ε

1!
[F,B†

i ] +
ε2

2!
[F, [F,B†

i ]]

+
ε3

3!
[F, [F, [F,B†

i ]]] + · · ·, (53)

in agreement with equations (G22, G23). Using equa-
tions (13, 14), it is actually possible to write these com-
mutators in terms of the deviation-from-boson operator
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Dmi and the Pauli scatterings λ
(

n j
m i

)
. The commutators

with one F only read

[F, B̄†
i bound] = −B†

i , (54)

[F,B†
i bound] = B̄†

i −
∑

m bound

B̄†
mDmi, (55)

[F,B†
i unbound] = −

∑
m bound

B̄†
mDmi. (56)

In order to get the commutators with two F , we first note
that, due to equation (14),

[Bj , Dmi] =
∑

n

[
λ
(

j n
m i

)
+ (i↔ n)

]
Bn, (57)

since D†
mi = Dim, while λ

(
n j
m i

)∗
= λ

(
j n
i m

)
. As

[Dmi, B̄
†
j ] = 0, for these operators act in different sub-

spaces, we do have

[F,Dmi] =
∑

j bound

∑
n

{[
λ
(

j n
m i

)
+ (i↔ n)

]
B̄†

jBn

+
[
λ
(

n j
m i

)
+ (m↔ n)

]
B†

nB̄j

}
. (58)

So that the commutator with two F , for bound composite
atoms, reads

[
F,
[
F,B†

i bound

]]
= −B†

i +
∑

m bound

B†
mDmi

−
∑

(m,j) bound

∑
n

B̄†
m

{
B̄†

jBn

[
λ
(

j n
m i

)
+ (i↔ n)

]

+ B†
nB̄j

[
λ
(

n j
m i

)
+ (m↔ n)

]}
. (59)

The calculation of commutators with more than two F
are increasingly tedious and their expressions increasingly
complicated. By noting that Dmi|0〉 = 0 = B̄j |0〉, while
U †(ε)|0〉 = |0〉, it is however rather easy to iterate equa-
tion (59), in order to show that, for one bound atom only,
we do have

U(ε)B†
i bound|0〉 =

{
B†

i

(
1 − ε2

2!
+ · · ·

)

+B̄†
i

(
ε

1!
− ε3

3!
+ · · ·

)}
|0〉. (60)

By identifying the above sums with cos ε and sin ε, as
somewhat reasonable, this shows that the one-composite-
atom state B†

i |v〉 is exactly transformed into the one-ideal-
atom state B̄†

i bound|0〉 by the unitary operator U(ε) taken
for the magic value ε∗ = π/2.

For states having more than one atom, the operator
U(ε) does not allow us to stay within the bound-atom
subspace, as can be seen from the sum over all n appear-
ing in [F, [F,B†]] already, as given in equation (59): this
is just the signature of the fact that bound and unbound

pairs of atoms are deeply linked by carrier exchanges — as
seen from equation (37) —, so that the separation between
these two types of operators is not mathematically possi-
ble. This also is fully consistent with the fact that, in addi-
tion to the bound-atom creation operator A†

α, Girardeau
has to keep the free-fermion-pair operators ψ(x)†ψ(X)†
in order to represent the unbound atom states possibly
reached by scatterings.

Before going further, let us note that, according to
equation (16) for 2 atoms, we must have

〈0|B2
i U

†(ε)U(ε)B†2
i |0〉 = 〈0|B2

iB
†2
i |0〉 = 2 − 2λ

(
i i
i i

)
,

(61)
whatever ε is. This nicely compact result seems difficult
to recover from the transformed two-atom state obtained
by using the expansion (53), even if we choose the magic
value ε∗ = π/2, in order for U(ε∗)B†

i |0〉 to reduce to
B̄†

i |0〉. Indeed, this expansion then gives, according to
equations (53–56), the transformed two-atom state as

U(ε∗)B†2
i bound|0〉 =

{
U(ε∗)B†

iU
†(ε∗)

}
B̄†

i |0〉

=

[(
1 − ε∗2

2!

)
B†

i B̄
†
i +

ε∗

1!
B̄†2

i

− ε∗2
∑

m bound,n

λ
(

n i
m i

)
B̄†

mB
†
n + O(ε∗3)

]
|0〉, (62)

for DmiB̄
†
i = 0 = BnB̄

†
i |0〉, as these operators act in dif-

ferent subspaces. By looking at the above result, we do
not see how the term 2λ

(
i i
i i

)
in the norm of the trans-

formed two-atom state can be recovered, even for the
magic value ε∗. This difficulty encountered for N = 2
atoms raises some major questions about the possibility
to perform explicit calculations, even the simplest ones,
within the Girardeau’s approach.

In reference [7], the four operators Aα, aα, ψ(X) and
ψ(x) are transformed into Aα(ε) = U(ε)AαU

†(ε) and sim-
ilarly for aα(ε), ψ(X, ε) and ψ(x, ε), not through equa-
tion (53) which seems hard to handle at high order, but by
using an “equation-of-motion method”, through the reso-
lution of a set of coupled nonlinear differential equations
for aα(ε), Aα(ε), ψ(X, ε) and ψ(x, ε). This set of equations
is solved iteratively starting from the zero order solution
obtained by completely neglecting all fermion exchanges
between cobosons.

The transformed Hamiltonian U(ε)HU †(ε) is then de-
rived, starting from equation (2), in terms of the trans-
formed free-fermion operators for ε∗ = π/2, which is
the magic value of ε giving a nicely simple result in the
case of just one atom. This Hamiltonian, written in equa-
tion (G68), contains scatterings between free fermions,
i.e., terms in ψ†ψ†ψψ, and scatterings between elementary
bosons, i.e., terms in a†a†aa. It also contains very many
terms in which one elementary ideal atom, scattered by
free fermions or other elementary ideal atoms, dissociates
into free fermions — or the reverse. The explicit calcu-
lation of the various terms appearing in the transformed
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Hamiltonian gets very fast extremely heavy. Actually, in
reference [7], the enumeration of these terms is limited to
multiple collisions in which both the number of incoming
and the number of outgoing particles is less or equal to
three, in this way, de facto, truncating the transformed
Hamiltonian.

3.2 Part of the transformed Hamiltonian UHU† acting
in the ideal-atom subspace

In order to make some explicit comparison between the
transformed Hamiltonian obtained by using Girardeau’s
Fock-Tani transformation described in reference [7] and
the composite-boson many-body theory, we now concen-
trate on the part of the transformed Hamiltonian which
only contains ideal-atom bosonic operators. Let us stress
that Girardeau never advocates to truncate the trans-
formed Hamiltonian to its ideal-atom part. However, in
the spirit of bosonization, this truncation is quite tempt-
ing.

If we take as coboson α the exact one-pair eigenstate
of the system Hamiltonian, the single-ideal-atom Hamil-
tonian given in equation (G69) reduces to

Ha =
∑
α

εαa
†
αaα ≡

∑
i bound

EiB̄
†
i B̄i. (63)

If we turn to the interaction part between the two ideal
atoms written in equation (G81),

Haa =
1
2

∑
αβγδ

a†αa
†
β〈αβ|H |γδ〉aγaδ, (64)

it contains three contributions which have different phys-
ical origins. It is possible to write each of these contribu-
tions in terms of the 2 × 2 scatterings of the composite-
boson theory.

The so-called “Coulomb contribution”, given in equa-
tion (G82), is just the direct Coulomb scattering,

〈αβ|H |γδ〉Coul = ξdir
(
β δ
α γ

)
. (65)

The second “Coulomb contribution”, given in equa-
tion (G83), is nothing but the exchange Coulomb scat-
tering symmetrized with respect to the “in” and “out”
processes, namely,

〈αβ|H |γδ〉Coul−Ex = −1
2
[
ξin
(
β δ
α γ

)
+ ξout

(
β δ
α γ

)]
. (66)

If we now turn to the last contribution, given in equa-
tion (G84), it is easy to show that, for atom states be-
ing the exact eigenstates of the Hamiltonian, [H(X,x) −
εγ ]φγ(X,x) = 0, this contribution reduces to

〈αβ|H |γδ〉Intra−Ex =
1
6
(εα + εβ + εγ + εδ)λ

(
β δ
α γ

)
. (67)

By adding these three contributions, we end with

〈αβ|H |γδ〉 = ξdir
(
β δ
α γ

)− 1
2
[
ξin
(

β δ
α γ

)
+ ξout

(
β δ
α γ

)]

+
1
6
(εα + εβ + εγ + εδ)λ

(
β δ
α γ

)
, (68)

for the scattering of two ideal atoms from states (γ, δ) to
states (α, β).

Since 〈0|aαaβψ
†(X) = 0, for free fermions and ideal

atoms act in different subspaces, the matrix element of the
transformed Hamiltonian in the two-ideal-atom subspace
thus reads

〈0|aαaβUHU
†a†γa

†
δ|0〉 = 〈0|aαaβ(Ha +Haa)a†γa

†
δ|0〉

= (εα + εβ)δα,γ δβ,δ + ξdir
(
β δ
α γ

)

− 1
2

[
− 1

3
(εα+ εβ+ εγ + εδ)λ

(
β δ
α γ

)

+ ξin
(
β δ
α γ

)
+ ξout

(
β δ
α γ

) ]

+ (α↔ β). (69)

If we now compare this matrix element to the matrix
element of the untransformed Hamiltonian in the two-
composite-boson subspace, given in equation (28), we see
that these two matrix elements are identical, except for the
prefactor (−1/3) in front of the ελ terms. This prefactor
is quite strange, not so much for the 1/3, but mainly for
its sign since, as ξin and ξout, this ελ term contains one
fermion exchange between two atoms, so that it should
have the same sign as the Coulomb exchange terms. This
(−1/3) prefactor can be traced back to the scattering
given in equation (67), in this way questioning the va-
lidity of the overall procedure to get aα(ε) not through
the exact equation (53) but through the “equation-of-
motion method” which avoids the difficulty of calculat-
ing and mostly summing up these higher order commu-
tators. However, since any physically relevant comparison
between matrix elements has to be performed with nor-
malized states, let us postpone this comparison to the next
section.

4 Discussion

In this last section, we compare the composite-boson
many-body theory to the Fock-Tani transformation pro-
cedure proposed by Girardeau in its original work [7],
through three rather different points of view: aesthetics,
simplicity and correctness.

4.1 Aesthetics

Instead of separating bound atom states from unbound
ones and adding to the bound-atom states the full set
of free-fermion states, as necessary to possibly represent
dissociated states reached by scatterings, it seems to us far
more natural to keep all the bound and unbound states of
the atoms and to completely forget the free-fermion states,
as done in the composite-boson many-body theory.

Since the free-fermion states ψ†(X)ψ†(x)|0〉 form a
complete set for one-fermion-pair states in themselves, by
adding the bound atom states A†

α|0〉 to these free-fermion
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states, Girardeau generates an overcomplete set of states
for one-fermion-pair states already — which is an unneces-
sary source of difficulties. This has to be contrasted with
the bound and unbound atom states B†

i |0〉, used in the
composite-boson many-body theory: they form a complete
set for one-fermion-pair states, so that no additional states
are needed to describe any one-pair system.

We now turn to N = 2 fermion pairs. The states made
of bound atoms plus free-fermion pairs as well as the states
made of bound and unbound atoms, form an overcom-
plete set. However, by contrast to the bound-atom plus
free-fermion states used by Girardeau, the overcomplete
set of states made of bound and unbound atoms used in
the coboson many-body theory is somewhat nicer as it
has a closure relation, equation (39), very similar to the
one for elementary bosons, except for the prefactor 1/4 in-
stead of 1/2. This nicely simple closure relation is the neat
signature of the fact that the ensemble of bound and un-
bound atoms is more natural to describe 2 atoms than the
awkward ensemble made of bound atoms plus free-fermion
pairs.

Actually, a clean separation between bound atom
states and unbound atom states is not mathematically
possible: Indeed a product of bound-atom operators can
always be written in terms of unbound-atom operators,
according to equation (37). In addition, this separation
is not physically sharp since the difference between the
highest bound states and the lowest unbound states is
very weak. Consequently, it is not surprising to encounter
difficulties when using such a separation based on so weak
grounds. To our opinion, a more reasonable separation
from a physical point of view would have been to isolate
the atom ground state from the other bound and unbound
states, although, again, this separation cannot be mathe-
matically clean, due to equation (37).

4.2 Simplicity

The composite-boson many-body theory relies on the four
nicely compact commutators written in equations (13, 14)
and (21, 22). The last two ones are associated to interac-
tions between cobosons without fermion exchange. The
other two are associated to fermion exchanges without
fermion interaction. All physical quantities dealing with
interacting composite bosons ultimately read in terms of
the Coulomb and Pauli scatterings generated by these four
commutators, the calculation of any physical quantity in-
volving N composite bosons reducing to a set of commu-
tations, the ones for N = 2 atoms being totally trivial
within this framework.

The procedure proposed by Girardeau in reference [7],
based on a Fock-Tani transformation, is very attractive
at first. Indeed, a smart unitary operator transforms a
one-composite-atom bound state into a one-elementary-
boson state, in an exact way, through an “intuitively
straightforward” calculation (see Eq. (60)). Unfortunately,
the transformation of N -composite-atom bound states for
any N larger or equal to 2 turns out to be considerably

more tedious. Being in fact done through an iterative pro-
cess, it leads to a form which is not compact at all even
for N = 2, i.e., when similar calculations done through
the composite-boson theory are totally trivial. The trans-
formed Hamiltonian this unitary operator generates, is
also extremely complicated and impossible to write explic-
itly. It, in principle, contains an infinite number of terms
which correspond to all possible scatterings between any
number of bound atoms and free fermions. Its reduction to
a finite number of terms — which is of practical necessity
— is made through a reduction in the number of scattered
quantum particles — atoms, free electrons or free protons
— included in the theory. As a practical consequence, this
limits the approach to problems involving a small amount
of atoms. It is of importance to note that an order in the
number of particles involved in the scatterings is not at all
related to an order in the atom density — which is the key
parameter of any many-body effects involving N atoms.
Such a reduction thus appears as driven by the heaviness
in the calculations we are ready to perform. On that re-
spect, the Shiva-diagram representation of the composite-
boson many-body theory is far nicer because such a den-
sity expansion is associated with a selection of diagrams
with an increasing number of coboson lines — as can be
for example seen from equation (35).

4.3 Correctness

Although not advocated by Girardeau, it is quite tempting
to use his procedure as a bosonization procedure, i.e., to
truncate the transformed Hamiltonian UHU † to its part
acting in the ideal-atom subspace, and to compare the
result it generates for a physically relevant quantity to
the one calculated with the untransformed Hamiltonian
in the untransformed composite-atom subspace. This has
the advantage to have a well defined transformed Hamil-
tonian instead of an infinite series of terms with no clear
requirement for truncation.

Let us consider the Hamiltonian expectation value
in a state made with N identical ground state atoms 0
and start with N = 2. Since for ideal (bosonic) atoms
〈0|aN

0 a
†N
0 |0〉 = N !, we get from equation (69) the expec-

tation value of the transformed Hamiltonian for two ideal
atoms as

〈0|a2
0UHU

†a†20 |0〉
〈0|a2

0a
†2
0 |0〉 = 2E0 +

2
3
E0λ

(
0 0
0 0

)− ξin
(
0 0
0 0

)
, (70)

since ξdir
(
0 0
0 0

)
= 0, according to equation (24), while

ξin
(
0 0
0 0

)
= ξout

(
0 0
0 0

)
, according to equation (30).

This result has to be contrasted with the exact expres-
sion of the Hamiltonian expectation value for two compos-
ite atoms, as trivially calculated from the composite-boson
many-body theory, see equation (33),

2E0 −
ξin
(
0 0
0 0

)
1 − λ (0 0

0 0)
. (71)

Since λ
(
0 0
0 0

)
= (33π/2)(aB/L)3, as given in equation (19),

is extremely small compared to 1 for macroscopic samples,
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the denominator of equation (71) is essentially equal to 1.
For E0 = −R0, the term E0λ

(
0 0
0 0

)
of equation (70) is

of the order of ξin
(
0 0
0 0

)
= −(26π/3)(aB/L)3R0, as given

in equation(34). So that, the results of equations (70)
and (71) are definitely different, although the difference
with the bare energy 2E0 is vanishing as (aB/L)3 in the
large sample limit. This thus shows that one cannot re-
place composite atoms by the ideal bosonic atoms intro-
duced by Girardeau, even for N = 2.

The discrepancy becomes physically relevant in the
case of N atoms. Indeed, we have shown in equation (36)
that the density expansion of the untransformed Hamilto-
nian expectation value reads as

〈0|BN
0 HB

†N
0 |0〉

〈0|BN
0 B

†N
0 |0〉 � N

[
E0 − N

2
ξin
(
0 0
0 0

)
+ · · ·

]

� NR0

[
−1 +

13π
3
η +O(η2)

]
, (72)

since E0 = −R0, in agreement with Keldysh-Koslov [33]
and with Nozières-Comte [35].

Let us now consider a similar quantity in the ideal-
atom subspace. Since the part of UHU † acting on ideal
atoms reduces to Ha + Haa given in equations (63, 64),
its expectation value for N ideal atoms reads, using equa-
tion (69) and equations (19, 34),

〈0|aN
0 (Ha +Haa)a†N0 |0〉
〈0|aN

0 a
†N
0 |0〉 �

N

{
E0 − N

2

[
ξin
(
0 0
0 0

)− 2
3
E0λ

(
0 0
0 0

)]}

� NR0

(
−1 − 7π

6
η

)
, (73)

since E0 = −R0 for 3D ground state.
Besides the fact that it differs from the exact result

given in equation (72), the above result has to be physi-
cally rejected for two major reasons:

(i) It would lead to a collapse since the energy of N atoms
would decrease with increasing density.

(ii) The presence of a E0λ
(
0 0
0 0

)
term in the interacting

part of the Hamiltonian expectation value, as given
in equation (73), is physically unacceptable: it makes
this interacting part depending on the choice made for
the energy origin. In the case of excitons, the ground
state energy E0 is in fact equal to (−R0) plus the band
gap; so that this E0λ

(
0 0
0 0

)
term would give a band

gap contribution to the N -exciton energy coming from
exciton-exciton interactions: it is physically clear that
these interactions are only due to Coulomb interaction
and carrier exchanges with no contribution from the
carrier-ion interactions responsible for this band gap.

Actually, all these problems can be traced back to the re-
placement of composite bosons by elementary bosons —
which is the aim of any bosonization procedure. In or-
der to make it clear, let us come back to the case of just
two atoms. When looking at equation (28), we see that

a term in Eλ also exists in the matrix elements of the
fermionic Hamiltonian H in the two-composite-atom sub-
space. However, in the Hamiltonian expectation value, this
Eλ term is cancelled exactly by a similar Pauli term ap-
pearing in the scalar product of the two-composite-atom
states, as seen from equation (33). When composite atoms
are replaced by ideal (bosonic) atoms, the scalar prod-
ucts of the ideal-atom states do not contain any Pauli
scattering, since the aim of bosonization is to forget all
fermion exchanges once bosonization is performed. Con-
sequently, the Eλ terms, which also exist in the matrix
elements of the transformed Hamiltonian, cannot be can-
celled when taking normalized two-ideal-atom states. This
is the mathematical reason for the appearance of the spuri-
ous Eλ terms in the Hamiltonian expectation value, when
restricted to ideal (bosonic) atoms.

It is of importance to stress that, if the unitary trans-
formation were to be performed exactly, i.e., if this trans-
formation were not used as a bosonization procedure by
only keeping the ideal atom contribution, the two proce-
dures should of course give exactly the same result, since
the replacement of I by U−1U is totally armless. How-
ever, as

〈0|AN
0 HA

†N
0 |0〉

〈0|AN
0 A

†N
0 |0〉 =

[〈0|AN
0 U

†(ε)] [U(ε)HU †(ε)] [U(ε)A†N
0 |0〉]

[〈0|AN
0 U

†(ε)] [U(ε)A†N
0 |0〉] , (74)

this exact calculation not only requires to use the ex-
act transformed Hamiltonian U(ε)HU †(ε), but also the
exact transformed state U(ε)A†N

0 |0〉. By approximating
U(ε∗)A†n

0 |0〉 by a†N0 |0〉, as done in equation (73), i.e., by
only working in the ideal atom subspace [38] — which is
the aim of any bosonization — we generate a major mis-
take, since the norm of this ideal-atom state is N ! instead
of N !FN . This mistake is the main reason for the unphys-
ical result obtained in equation (73).

As the form of the transformed operator A†
α(ε) is not

at all compact, it actually seems as extremely difficult to
explicitly prove that the norm of

[
A†

α(ε)
]N |0〉 is exactly

equal to N !FN , even in the case of just N = 2 atoms (see
Eq. (62)). The exact expression of the transformed Hamil-
tonian also seems above any hope. Consequently, although
it should in principle be possible to obtain correct re-
sults by performing the Fock-Tani unitary transformation
exactly, calculations using this procedure are definitely
far more complicated than the ones done by using the
four nicely compact commutators of the composite-boson
many-body theory given in equations (13, 14) and (21, 22),
even in the “trivial” case of just 2 atoms.

Last but not least, the Shiva-diagram representation
of this many-body theory, which is now available [16], al-
lows an easy understanding of the fermion exchanges en-
tering the various terms. This is quite valuable in view
of the very tricky but quite interesting physics associated
to these fermion exchanges, in particular when spin de-
grees of freedom are kept. By selecting diagrams with an
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Fig. 7. Product of Pauli scatterings appearing in equa-
tion (76): it readily reduces to δm,i δn,j .

increasing number of coboson lines, it is possible to gener-
ate the density expansion of any physical effect at hand,
while the selection of diagrams with an increasing number
of interactions generates the detuning expansion of any
optical nonlinearity in semiconductors.

4.4 Bosonization using a fully antisymmetrical coboson
state

In this last section, let us come back to some consequences
of the overcompleteness of the coboson basis which re-
sults from equation (37). Girardeau has suggested [5] to
remove some unpleasant features of this overcompleteness
by imposing a so-called “subsidiary condition”. This corre-
sponds to restrict to representations on the coboson basis
which have stable prefactors under equation (37). As an
example, among all the equivalent representations of the
2-composite-atom state B†2

0 |v〉 deduced from this equa-
tion (37), namely,

aB†2
0 |0〉 − b

∑
mn

λ
(
n 0
m 0

)
B†

mB
†
n|0〉, (75)

with a + b = 1, we select the one with a = b = 1/2:
if we then replace the product of coboson operators by
equation (37), the prefactors stay unchanged, as can be
seen from

|ψ00〉 =
1
2
B†2

0 |0〉 − 1
2

∑
mn

λ
(
n 0
m 0

)
B†

mB
†
n|0〉

= −1
2

∑
pq

λ
(

q 0
p 0

)
B†

pB
†
q |0〉

+
1
2

∑
rs

B†
rB

†
s |0〉

∑
mn

λ (s n
r m)λ

(
n 0
m 0

)
, (76)

the second term reducing to (1/2)B†2
0 |0〉, since, as seen

from Figure 7 or possibly checked through closure rela-
tions using equation (15), the sum of λλ appearing in
equation (76) is equal to δr,0 δs,0.

By imposing the stability condition with respect to
equation (37), through a = b = 1/2, we indeed remove the
apparent indetermination which appears when writing a
given two-pair state on the coboson basis. However, the
introduction of this stable representation which may look
very appealing at first, turns out to be a very bad idea.
Indeed, following Barentzen and coworkers [9,39], we can
be tempted to use this stable representation to make a

one-to-one mapping between composite atoms and ideal
atoms. This would lead to replace B†2

0 |0〉 not by a†20 |0〉 as
done in equation (70), but by

|ψ00〉 =
1
2
a†20 |0〉 − 1

2

∑
mn

λ
(
n 0
m 0

)
a†ma

†
n|0〉. (77)

If we then use the commutation rules for elementary
bosons, it is easy to show that the normalization factor
of the state |ψ00〉 now reads

〈ψ00|ψ00〉 = 1 − λ
(
0 0
0 0

)
. (78)

It now contains the Pauli scattering which was missing in
〈0|a2

0a
†2
0 |0〉, which is nice. It however differs by a factor of

2 from the bare normalization factor of the original state
〈ψ00|ψ00〉, given in equation (16), when Pauli scatterings
are neglected — which is not too nice.

If we now calculate the diagonal matrix element of
the most general effective Hamiltonian in the ideal-atom
subspace, namely,

Heff =
∑

i

εi a
†
iai +

1
2

∑
mnij

V mnija
†
ma

†
naiaj , (79)

we find for the 2-boson state |ψ00〉

〈ψ00|Heff |ψ00〉 = ε0
[
1 − 2λ

(
0 0
0 0

)]

+
∑

εi λ
(

0 j
0 i

)
λ
(

j 0
i 0

)
+

1
2

[
V 0000 −

∑
V 00ijλ

(
j 0
i 0

)

−
∑

λ
(
0 n
0 m

)
V mn00 +

∑
λ
(
0 n
0 m

)
V mnijλ

(
j 0
i 0

)]
, (80)

in which we have used V mnij = V nmij = V mnji, as always
possible to enforce by symmetrizing equation (79).

We see, from equations (78, 80), that even the non-
interacting part of the Hamiltonian expectation value cal-
culated with |ψ00〉 instead of a†20 |0〉, is now incorrect:
since, in the large sample limit, λ

(
0 0
0 0

)
goes to zero, this

non-interacting part now is ε0 instead of 2ε0.
The situation is somewhat worse if we use the bosonic

Hamiltonian obtained through the Girardeau’s procedure
truncated to its ideal atom terms, as given in equa-
tion (69). Indeed, the ελ term in the effective scattering
modifies the leading term of this matrix element: As two
exchanges reduce to an identity, we end with

〈ψ00|UHU †|ψ00〉 =
2
3
ε0
[
1 − 2λ

(
0 0
0 0

)]
+ ξdir

(
0 0
0 0

)

− 2ξin
(
0 0
0 0

)
+

2
3

∑
εiλ
(

0 j
0 i

)
λ
(

j 0
i 0

)

+
∑

λ
(
0 n
0 m

)
ξdir

(
n j
m i

)
λ
(

j 0
i 0

)
. (81)

We thus conclude that the Hamiltonian expectation value
obtained by using the form |ψ00〉 of the two-atom state,
fully symmetrical with respect to exchange, is even more
different from the exact value than the one obtained by
simply using a†20 |0〉.



302 The European Physical Journal B

In addition, let us stress that the states (m,n) in
the expansion (75) of B†2

0 |0〉 are bound as well as ex-
tended atomic states a priori. So that a direct mapping of
B†

mB
†
n|0〉 into a†ma

†
n|0〉 is not really possible for all (m,n)

since these ideal bosonic states are defined for bound
states only.

In the extended version [25] of our work on the exciton-
exciton scattering rate [40], we have also considered the
possibility to use Coulomb scatterings stable with respect
to fermion exchanges. Due to equation (37), it reads

∑
mn

ξdir
(

n j
m i

)
B†

mB
†
n = a

∑
mn

ξdir
(

n j
m i

)
B†

mB
†
n

− b
∑
pq

B†
pB

†
q

∑
mn

λ
(

q n
p m

)
ξdir

(
n j
m i

)

=
∑
mn

B†
mB

†
n

[
a ξdir

(
n j
m i

)
− b ξin

(
n j
m i

)]
, (82)

with a + b = 1: we may think that the Coulomb scatter-
ings between two cobosons are somewhat arbitrary. This
is why we can also be tempted by taking scatterings which
are stable with respect to carrier exchanges, these stable
scatterings reading

ξ
(

n j
m i

)
=
[
ξdir

(
n j
m i

)
− ξin

(
n j
m i

)]
/2. (83)

In reference [16], we have explicitly shown that such “ap-
pealing” scatterings, when inserted in effective bosonic
Hamiltonians, lead to results which are even farther from
the correct values of the coboson transition rates and life-
time than the ones obtained from “unstable” Coulomb
scatterings.

Before ending this paper, let us mention that, after
the original work done by Girardeau in 1975, and used
here to describe the basic ideas of this approach, develop-
ments have occured showing that this effective Hamilto-
nian misses some important physics, as for example, the
orthogonality terms. Among them, we can cite the “res-
onating group method” described in reference [41] which
does not rely on mapping procedures.

5 Conclusion

The aim of this work is to discuss the sophisticated pro-
cedure based on a unitary Fock-Tani transformation pro-
posed [7] to describe interacting atoms by Girardeau in
the mid 70’s, in the light of the composite-boson many-
body theory first developed for excitons [15] and re-
cently extended to any type of composite bosons [42].
The Girardeau’s procedure generates transformed states
and transformed Hamiltonian so complicated that some
truncation is a practical necessity. This can be done for
example by restricting the approach to problems dealing
with few body collisions. We here show that, when used
as a bosonization procedure, i.e., when restricted to the
ideal atom subspace in which atoms behave as elementary
bosons — a restriction not advocated by Girardeau —

this procedure leads to results which are definitely differ-
ent from the exact ones, even in the extreme dilute limit
of just two atoms. This work, once more, shows that the
replacement of composite atoms by elementary quantum
particles can be extremely dangerous, even qualitatively.
In order to fully trust the obtained results, it seems to
us far safer to stay in the original fermion space and to
use the many-body theory for composite bosons which is
now available. Its Shiva diagram representation [16] makes
clear the subtle physics which results from the interplay
between fermion interactions and fermion exchanges in
such tricky composite-particle systems. These diagrams
are also very valuable as they allow an easy selection and
a readily calculation of pocesses leading to a density ex-
pansion or a detuning expansion of the physical effect at
hand.
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for many stimulating discussions. I also gratefully acknowl-
edge the various comments and suggestions made by Marvin
Girardeau, Adrian Kantian and Walter Pogosov. I also thank
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